حل المعادلات الخطية في متغيرين. المعادلة ص = 4 س + 20 معادلة خطية
حل المعادلات الخطية في متغيرين. المعادلة ص = 4 س + 20 معادلة خطية
زوارنا الكرام نسعد أن نقدم إجابة السؤال الذي يقول.حل المعادلات الخطية في متغيرين. المعادلة ص = 4 س + 20 معادلة خطية..... من مصدرها الصحيح في منصة مدينة العلم الذي تقدم لكم الكثير من المعلومات الصحيحة من شتى المجالات التعلمية والثقافية وحلول الألغاز بأنواعها الذهنية ولكم الأن حل السؤال الذي يقول....حل المعادلات الخطية في متغيرين. المعادلة ص = 4 س + 20 معادلة خطية..واجابتة الصحيحة الذي نقدمها لكم في موقع مدينة العلم وهي
الإجابة الصحيحة هي ، ومن الخط المتصل الذي يمثل هذه المعادلة نستنتج أن لهذه المعادلة حلولاً عديدة، أي أنه يوجد عدد كبير من الأزواج المرتبة التي تجعل ص = 4 س + 20 تقريراً صائباً. ويظهر في هذه المعادلة متغيران س و ص. وبما أن للمعادلات الخطية حلولاً كثيرة فإننا نضع في الغالب بعض القيود على هذه الحلول، لأنه في بعض الأحيان نستخدم هذه المعادلات لإيجاد حلول لمسائل تطبيقية. ولكي يتم ذلك فلا بد من إيجاد وسيلة نقصر بها حلول المعادلة على حل واحد فقط. وإحدى الطرق المستخدمة هي أن نجد معادلتين تكونان صائبتين لزوج مرتب واحد فقط. وهناك طريقة أخرى تستخدم فيها معادلة واحدة لكن مع حصر الحلول في الأعداد الصحيحة الموجبة.
ولتوضيـح الطـريقة الأولى نأخذ المعادلتين 2 ص = س + 4 و ص + س = 5. نستخدم الرسم البياني لحل هاتين المعادلتين ولكن ننشىء أولا جدولا يحتوي قيماً لبعض حلول كل من المعادلتين .
نعين هذه القيم على الرسم البياني، ثم نرسم الخط الذي يمثل كل معادلة من هاتين المعادلتين. نجد أن الخطين يتقاطعان في نقطة، ونقطة تقاطعهما تمثل مجموعة حل المعادلتين معًا. وهذه النقطة هي (2، 3). أي أن قيمة س هي 2 وقيمة ص هي 3. هاتان القيمتان فقط هما قيمتا س و ص اللتان تعطيان حلاً للمعادلتين معاً.
نستطيع أيضاً أن نجد حلاً لمعادلتين خطيتين بطريقة حذف أحد المتغيرين. وهذه الطريقة تنتج لنا معادلة واحدة تحتوي على متغير واحد. نستخدم المعادلتين 2 ص = س + 4 و ص + س = 5 لتوضيح هذه الطريقة. هناك عدة طرق لحذف متغير، ونستخدم هنا طريقة تعرف بطريقة التعويض. ونستخدم إحدى المعادلتين لنضع ص بدلالة س ولتكن ص + س = 5. إذن ص = 5 - س. نعوض الآن عن ص في المعادلة الثانية 2 ص = س + 4 لنحصل على 2 (5 - س) = س + 4. ولتبسيط هذه المعادلة نجد أن 10 - 2 س = س + 4، أي 3 س = 6 ومنها س = 2. نعوض الآن عن قيمة س في أي من المعادلتين ونوجد قيمة ص فنحصل على ص = 3. 2ص = 2+4 وص + 2 = 5 وبالتالي فإن مجموعة الحل هي {(3 ،2)}
حل المعادلات الخطية في متغيرين. المعادلة ص = 4 س + 20 معادلة خطية .